解决方案 所有项目都旨在使用优化技术为船舶结构打造一次成功型设计解决方案。首先研究的是船舶的双底结构,它通常要承受来自大型设备的巨大流体静压与动态载荷。此外,该结构必须符合“密闭空间准入与疏散安排政策”,这就需要在双底底板上设置进入口。而对于底板则需要特殊的注意。Altair ProductDesign利用了Altair HyperWorks仿真工具套件中的OptiStruct并辅以拓扑优化技术,来推动高效设计解决方案。 通过在底板结构中辨别可设计空间和非可设计空间并应用已知载荷和约束,团队可以在兼顾结构性能的同时确定进入口的最佳位置。 通常,拓扑优化流程可以发现全局结构(如舱壁)和局部结构(包括舱壁中的开口)中的最佳位置,在去除结构中多余材料的同时保证最佳的性能。该过程不仅可以获得高效的结构解决方案,还可以减轻结构重量并最大程度地降低应力集中情况,从而避免在后续设计过程中进行修补工作。使用拓扑优化技术确定了在双底底板上设置进入口的最佳位置后,会在最终设计说明中进行尺寸和形状的优化。此步骤可以进一步提升结构的压力反应,并在实现设计目标的同时最大程度降低钢结构质量。借助优化方法,Altair ProductDesign所创建的结构比基准设计轻9%,同时满足了基准设计未能达到的所有应力目标。 仿真驱动设计的高效性在另一个项目中也得到了充分印证。Altair ProductDesign团队使用仿真驱动流程为航空母舰的飞行管制室 (FLYCO) 确定了优化设计。FLYCO 结构由一个大型釉面组成,位于上下舷结构之间。这些舷台结构需要满足固有频率与挠度的要求,因此其设计受制于质量与刚度的复杂相互作用。
首先采用拓扑优化技术在管制室的封装包络线中确定了加强筋的最优全局位置。在接下来的拓扑优化中,找到了这些加强筋中的最佳加载路径,这样即可在不影响结构性能的情况下切割开口。 最后,通过对尺寸和形状进行优化来微调板厚度和开口大小,以在满足设计目标的前提下最大程度降低质量和设计复杂性。最终得出的结构全面实现了固有频率、挠度、应力以及屈曲四大目标。与传统设计相比,该结构使用的零件更少,重量减轻达16%,显著降低了制造成本。
除此之外,Altair ProductDesign与ACA还进行了其他仿真驱动设计项目,包括航母的船尾平台以及横舱壁设计等等。 结论 与自动化和航空航天领域相比,以优化为中心的仿真驱动设计在海事工程领域中的发展缓慢很多,其主要原因在于新型舰船设计的周转率较低,因而不利于其快速发展以及新设计技术的应用。 仿真驱动设计为车辆和飞行器制造商提供的诸多设计优势在船舶制造业中也同样可以大展身手。船舶结构经过优化后,能尽量避免通过复杂的局部解决方案来处理概念设计阶段出现的问题,从而实现结构的轻质高效性,最终削减材料的使用量并降低制造成本。此外,仿真驱动设计只需很少的设计流程即可取得以上优势,并且还有助于减少解决局部结构问题所需的修补设计工作。 ACA携手ProductDesign进行的项目发现了传统船舶结构设计流程中的诸多不足与挑战。事实证明,仿真驱动设计可在船舶结构的设计与制造中大有作为,不仅能降低成本并减轻质量,还可以提高结构的性能和效率。 关于Altair公司 Altair公司是世界领先的工程设计技术的开发者之一,也是一家具有全球深厚工程技术底蕴的优秀CAE工程公司。Altair 公司拥有多元化的业务主线,其技术涵盖高端CAE仿真和优化技术、数据管理及流程自动化、高性能计算与网络计算技术,同时具备一流的产品设计、流程定制、二次开发等咨询服务能力。Altair目前为私人所有,总部设在美国底特律,在全球拥有1800多位员工,分支机构遍及美洲、欧洲及亚太地区。凭借其在产品设计、先进CAE工程软件开发和网格计算技术等方面拥有27年的经验,Altair不断为各个行业的客户创造竞争优势。http://www.altair.com.cn |