美国国防部正在开展一项关于士兵可穿戴无线设备的研究,该设备能帮助医疗人员检测士兵的生命体征,收集有关医学信息。可穿戴无线设备的开发也能检测和记录运动员的表现情况,包括跑步速度以及步数等。 无论什么应用,贴近人体的无线设备都面临一系列主要的设计挑战。设备辐射必须保持在较低水平,避免对人体构成健康威胁。设备功耗、尺寸、长宽比和重量同时也要实现优化以适合穿戴。同时设备还要确保能够发送足够功率的信号,以发送到正确的位置,从而被目标设备很好地接收,同时要考虑到人体本身可能会吸收大部分信号的问题。 系统建模 Synapse Product Development为业界领先的消费电子和生命科学企业,解决从概念到制造的有关工程难题。该公司的一大专长在于开发可穿戴无线设备,满足各种应用的需求。天线设计往往是这种设备的一大挑战,因为身体会吸收很多能量。Synapse采用ANSYS HFSS 3-D全波电磁(EM)仿真器和ANSYS人体模型来评估各种天线设计的性能,进行完整的系统建模,包括无线设备、天线以及它们与人体的相互作用。由于无需构建物理原型就可评估设计,这能够帮助Synapse工程师将天线性能比传统设计理念提高五倍之多。 ANSYS HFSS仿真输出显示足部和地面吸收的功率 天线设计的重点是发射器到接收器的功率传输。偶极子天线是很好的性能参考,能提供出色的几何结构,优化天线的功率传输。就FR4印刷电路板制成的2.45 GHz天线而言,波长为60毫米,因此偶极子的总长度应为30毫米。这对于大多数可穿戴无线设备来说都太长了。因此电气工程师要设计更小型化的天线,其性能则要与偶极天线尽可能类似。举例来说,工程师尝试将天线的辐射阻抗匹配于收发器的最佳负载阻抗。辐射阻抗是指天线辐射电磁波导致的天线馈点阻抗。
史密斯图帮助工程师匹配天线阻抗和发射器 设计环节
手腕上佩戴产品的3D增益 扩大范围、节约时间 在仿真技术指导下,电气工程师通常能将产品范围相对于初始概念而言扩大5倍,同时还能比传统的12个月开发周期省下差不多3个月的时间。 仿真提供的天线性能信息在可穿戴无线产品的系统设计中发挥重要作用。天线增益结果对链路分析非常重要,决定了范围和吞吐量。此外,天线增益也有助于确定需要多大的发射功率,进而影响电池的使用寿命。在人体上不止一个可穿戴设备的典型情况下,所有设备的天线同时优化,协调各自的增益,从而最大限度地降低电池功耗。 此外,我们还能通过仿真减小天线尺寸,以满足工业设计和机械设计目标,同时实现所需的性能水平。随着天线尺寸的减小,其工作频率带宽也在变窄。仿真不仅可预测带内性能,还能预测带外性能。仿真还有助于避免在可能对其他设备产生干扰的频点对外辐射。在仿真技术指导下,电气工程师通常能将产品范围相对于初始概念而言扩大5倍,同时还能比传统的12个月开发周期省下差不多3个月的时间。 |